Continuing Medical Education Internet Symposium

The 6th IAS Conference on Pathogenesis, Treatment and Prevention: ARV Therapies and Therapeutic Strategies

Jointly sponsored by the Postgraduate Institute for Medicine and ViralEd, LLC

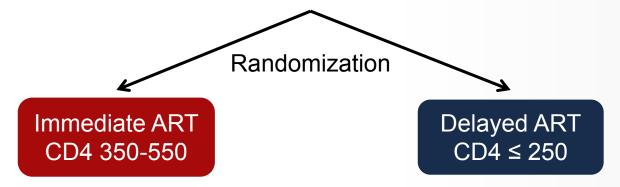
Epidemiology and Prevention

David Cooper, MD

Director and Professor,

Kirby Institute
University of New South Wales Sydney Australia
Sydney, Australia

2010: A Global View of HIV Infection


- >33 million HIV-infected worldwide
- > ~6.5 million currently on ARV therapy

Rome Statement for an HIV Cure: Objectives

- Recognizing the importance of developing a safe, accessible and scalable HIV cure as a therapeutic and preventive strategy against HIV infection and to help control the AIDS epidemic
- Committing to stimulating international and multidisciplinary research collaborations in the field of HIV cure research
- Encouraging other stakeholders, international leaders and organizations to contribute to accelerating HIV cure research through their own initiatives and/or by endorsing this statement and supporting the alliance that the Advisory Board is building

HPTN 052 Study Design

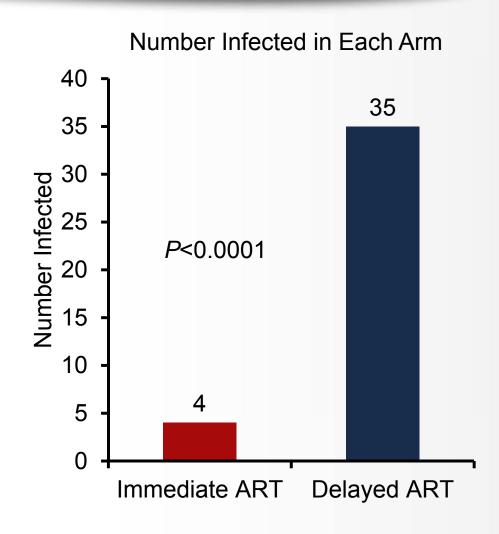
- 1,736 serodiscordant, sexually active, heterosexual couples randomized
- HIV-positive partner CD4 cell count between 350 and 550 cells/mm3

Primary Transmission Endpoint

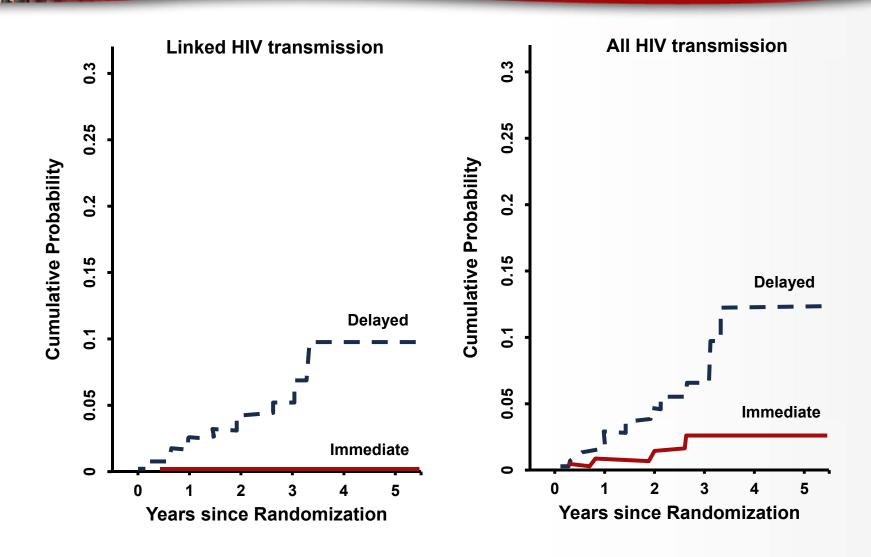
Virologically-linked transmission events

Primary Clinical Endpoint

WHO stage 4 clinical events, pulmonary tuberculosis, severe bacteria infection and/or death


Countries: Botswana, Brazil, India, Kenya, Malawi, South Africa and Zimbabwe

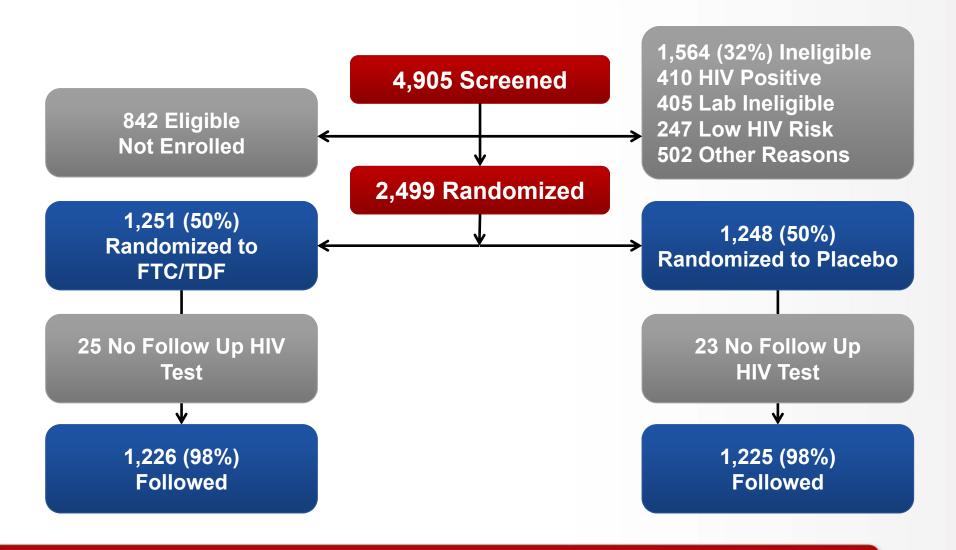
HPTN 052: Baseline Characteristics


	Index		Partner	
	Immediate N = 886	Delayed N = 877	Immediate N = 893	Delayed N = 882
Female	49%	50%	49%	47%
Age (median)	33	32	32	32
Married	94%	95%	93%	94%
Any unprotected sex	6%	8%	8%	8%
CD4 (median [IQR])	442 [373-522]	428 [357-522]		
HIV RNA log ₁₀ (median [IQR])	4.4 [3.8-4.9]	4.4 [3.9-4.9]		

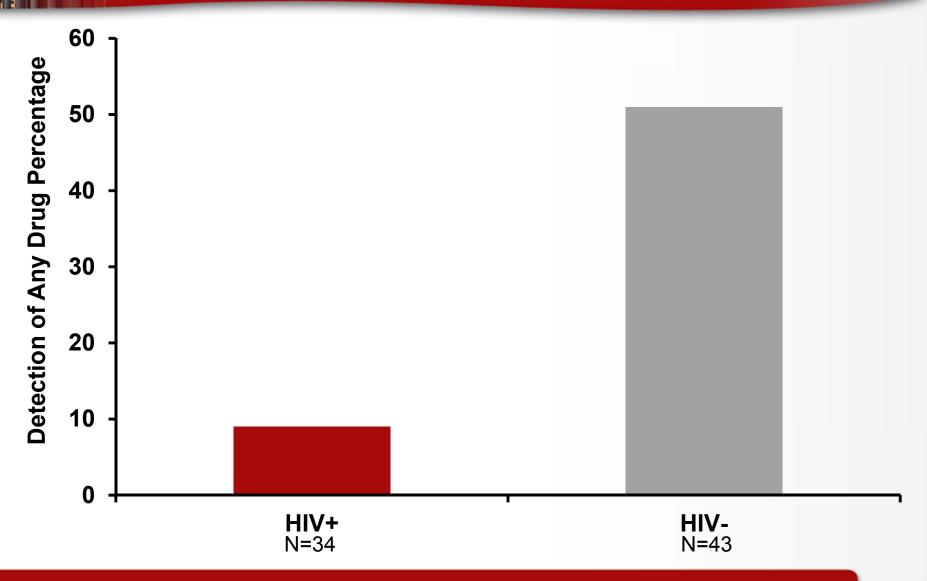
HPTN 052: Halted Early

- Study halted significantly more infections in delayed ART arm
- 96% reduction in the risk of transmission with immediate ART (P<0.0001)
- 27/28 infections genetically linked to HIV-positive partner occurred in Delayed Arm

HPTN 052: HIV Transmission Patterns

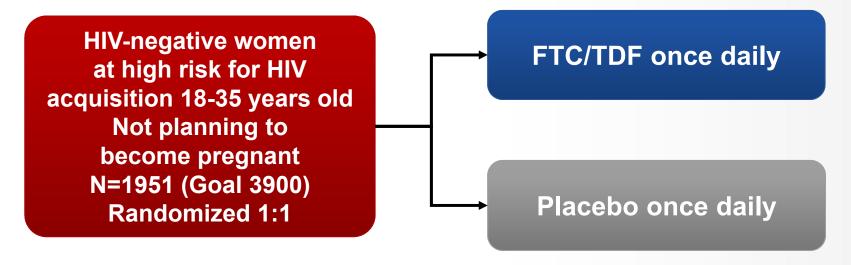

HPTN 052: Sexual Behaviors at Baseline and Follow-up

		Immediate (N=886)		Delayed (N=876)	
		Enrollment	Follow-up	Enrollment	Follow-up
Index pregnancy		63	47	59	79
STDs*	Index	1% - 5%	0% - 3%	1% - 5%	0% - 3%
	Partner	1% - 3%	0% - 2%	1% - 2%	0% - 4%
Sexual activity**	Index	72%	62% - 74%	74%	53% - 70%
	Partner	72%	67% - 81%	73%	62% - 76%
Condom use**	Index	94%	92% - 97%	92%	92% - 100%
	Partner	92%	90% - 100%	92%	92% - 100%


^{*}STDs include hepatitis B, syphilis, gonorrhea, and C. trachomatis

**Self-reported data

iPrEx: Study of TDF/FTC PrEP in HIV-negative men or transgender women who have sex with men



HIV by Group and Drug Detection

Group	Drug Detection	HIV Infections	Incidence Density
Placebo	No	64	3.86
FTC/TDF	No	33	4.04
	Yes	3	0.35
Relative Rat	e Reduction	91	%

FEM-PrEP

- Study halted Feb 18, 2011
 - Incident HIV infection: ~5% per year
 - N=56 new infections occurred
 - Equal number of infections in the two study arms

Partners PrEP Study

4758 HIV serodiscordant couples (HIV+ partner not yet medically eligible for ART)

Randomize HIV- partners (normal liver, renal, hematologic function)

TDF once daily

FTC/TDF once daily

Placebo once daily

All receiving comprehensive

HIV prevention services

Follow couples for up to 36 months

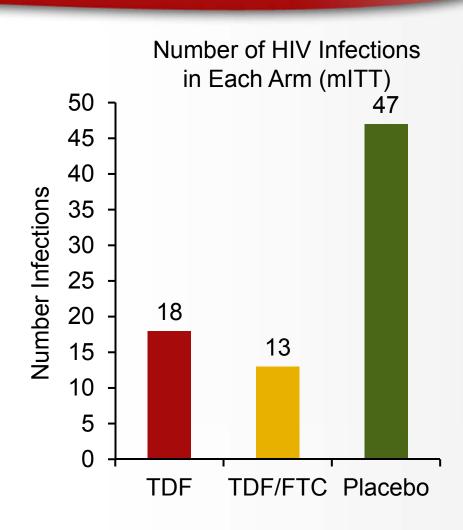
1° endpoint: HIV infection in HIV- partner Co- 1° endpoint: Safety

Partners PrEP Study: Study Procedures

HIV- participants

- Monthly HIV & pregnancy testing
- Monthly symptom & 3-monthly laboratory safety monitoring
- Monthly provision of study medication and individualized adherence counseling, including not sharing study drug

HIV+ participants

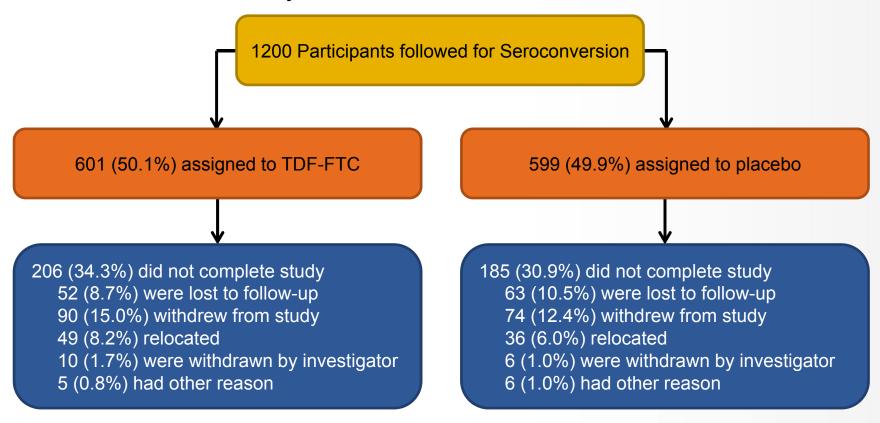

- 3-monthly visits
- 6-monthly CD4 counts
- Ongoing HIV primary care
- Active referral for ART following national guidelines

All participants: comprehensive HIV prevention package

- Risk reduction counseling (individual and couple)
- Free condoms and condom counseling
- Contraception counseling and provision
- Screening and treatment for STIs
- Counseling & referral for other HIV prevention interventions (e.g., male circumcision), per national policies

Partners PrEP Study: Results

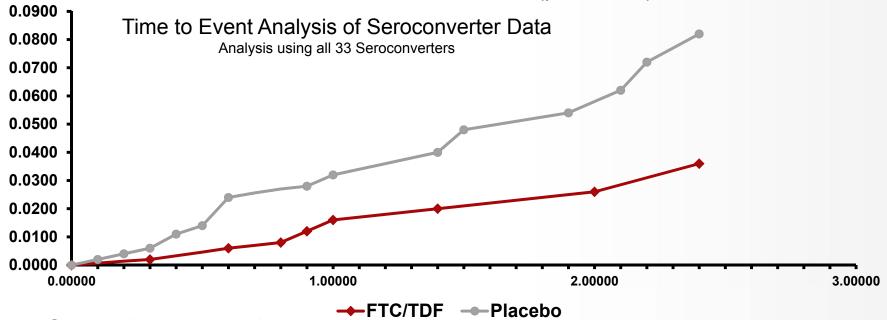
- Based on analysis through May 31, 2011, placebo arm discontinued but those receiving study medication continued
- Significantly fewer infections with TDF and TDF/FTC than placebo,
 - TDF: 62% reduction (P=0.0003)
 - TDF/FTC: 73% reduction (P<0.0001)
- TDF and TDF/FTC statistically similar (P=0.18)



Partners PrEP Study: Summary

- TDF and FTC/TDF PrEP reduced risk of HIV acquisition in African men and women
 - Similar efficacy between TDF & FTC/TDF
- TDF and FTC/TDF PrEP safe and well-tolerated
 - Mild gastrointestinal side effects
- No evidence of change in risk behavior

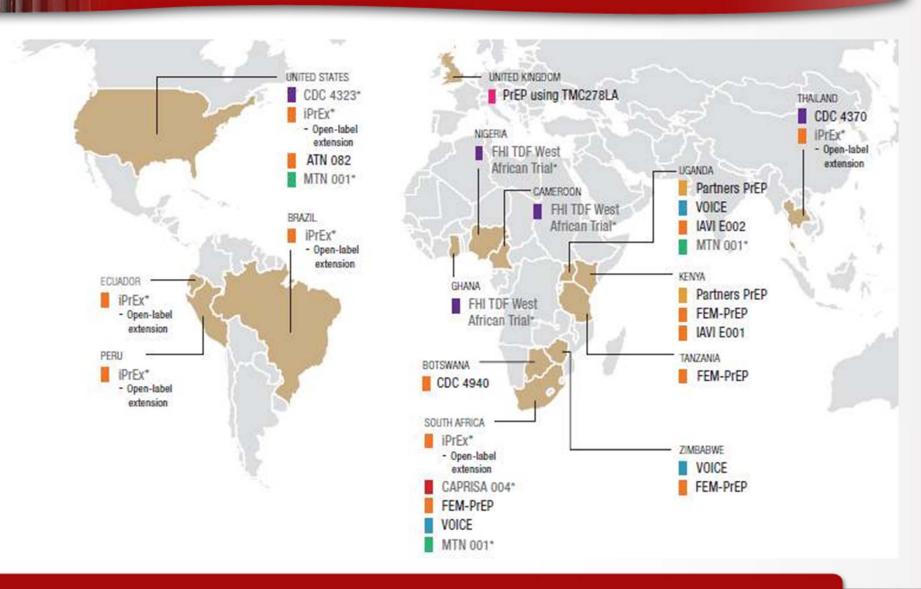
TDF2 Study


- Double-blind placebo-controlled randomized clinical trial
 - 18-39 years old, HIV-negative, sexually active within past 3 months, healthy

TDF2: Results

- Primary analysis:
 - 9/601 treated with TDF/FTC vs. 24/599 placebo became HIV+

63% reduction in infections with TDF/FTC (p=0.0133)



- Secondary analysis:
 - Excluding those infections in subjects who had run out of pills and who had not taken pills for >30 days, 77.9% fewer infections in people taking TDF/FTC (*P*=0.0053)

TDF2: Conclusions

- Daily TDF-FTC effective and safe for prevention of HIV infection among heterosexual men and women
 - Study not large enough to draw definitive conclusions by gender separately
 - Increased rates of dizziness, nausea and vomiting but otherwise well tolerated
- Overall safety and efficacy findings consistent with Partners of PrEP data

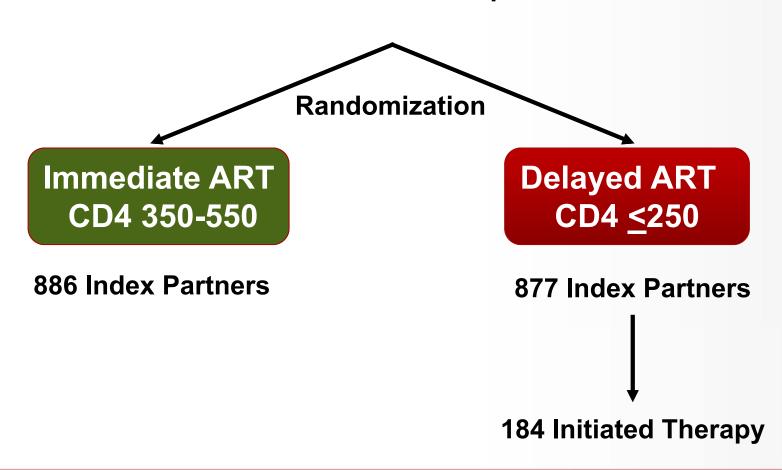
Ongoing and Completed PrEP Trials

Antiretroviral Therapy for Treatment Naïve Patients

Joseph J. Eron Jr.
Professor of Medicine
UNC at Chapel Hill

HPTN 052: When To Start Therapy

HPTN 052


- HIV infected individual in a discordant relationship with CD4 cell between 350-550 cells/mm³
 - Immediate therapy vs. delay until CD4 < 250 cells/mm³ or WHO IV event

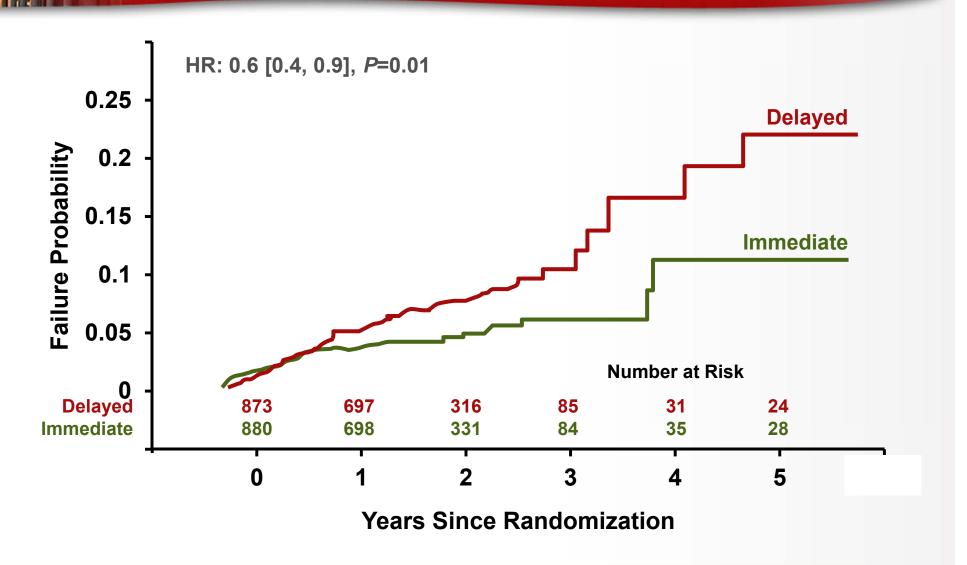
Primary Endpoints

- Death, WHO Stage 4 clinical event, pulmonary TB or severe bacterial infection
- All events underwent blinded independent review using standardized criteria
- The primary clinical endpoint
 - Time to first primary clinical event, including death

HPTN 052: Study Design

HIV-infected Subjects with CD4 350 to 550 cells/mm³
Serodiscordant Couples

HPTN 052: ART Regimens

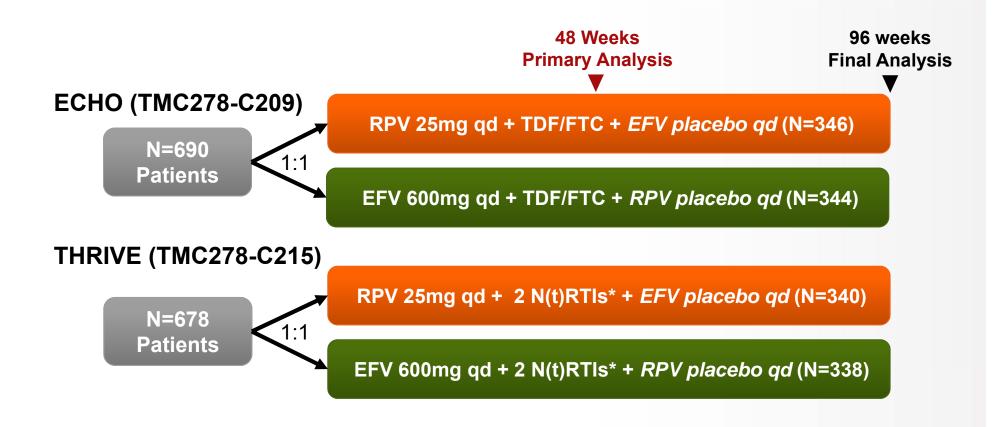

	Immediate Arm	Delayed Arm
N Initiating ART	886	184
EFV + AZT/3TC	72%	70%
ATV + AZT/3TC	10%	7%
EFV + FTC/TDF	9%	11%
LPV/r + AZT/3TC	7%	2%
Other	2%	10%

HPTN 052: Primary Results

- Median follow-up: 1.7 years
- 105 individuals experienced at least one primary clinical event
 - 40 immediate arm
 - 65 delayed arm

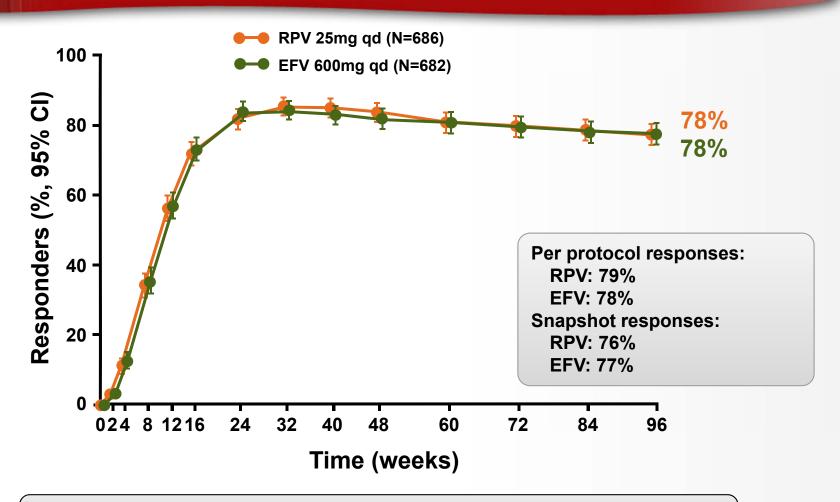
Study Arm	Follow-up	Incidence /100 PY [95% CI]
Immediate	1662 PY	2.4 [1.7 – 3.3]
Delayed	1641 PY	4.0 [3.1 - 5.0]

HPTN 052: Time to First Primary Clinical Event

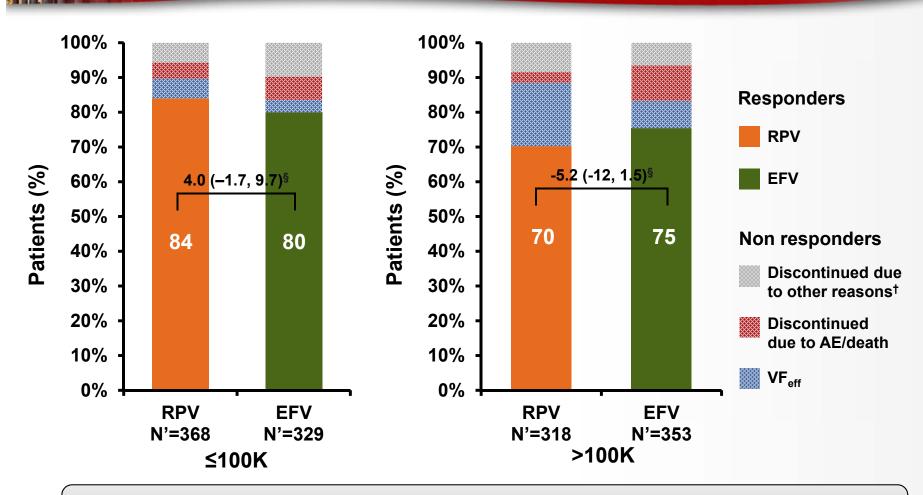


HPTN 052: All Primary Clinical Events (N=129)

17 subjects experienced >1 clinical event


	Immediate	Delayed
Total (N=129)	53	76
Tuberculosis	17	33
Severe bacterial infection	16	11
Death	10	13
Chronic herpes simplex	3	7
Bacterial pneumonia (recurrent)	2	2
Esophageal candidiasis	2	2
Cervical carcinoma	0	2
Kaposi's sarcoma	1	1
Wasting syndrome	0	2
Other	2	3

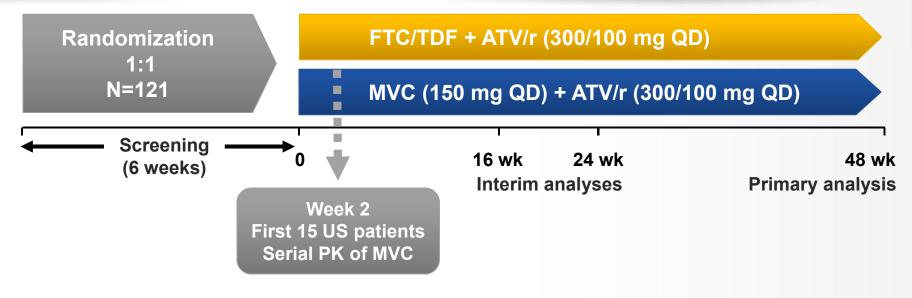
ECHO and THRIVE Double-blind Study Designs


*Investigator's choice: TDF/FTC; AZT/3TC; ABC/3TC

Pooled ECHO and THRIVE: VL <50 copies/mL over 96 weeks (ITT-TLOVR)

 Mean change in CD4 cell count from baseline at Week 48 (NC=F): RPV: +228 vs. EFV: +219 cells/mm³

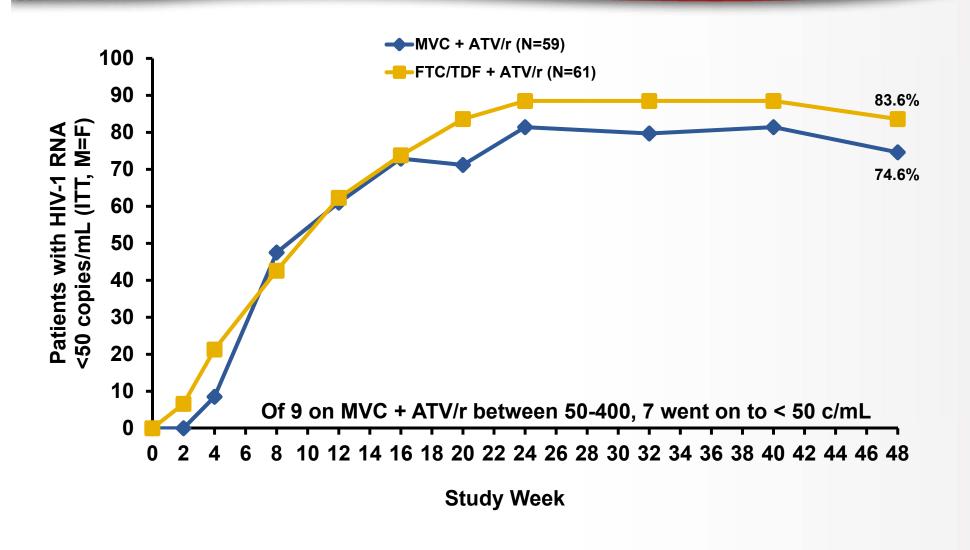
Pooled ECHO and THRIVE: ITT-TLOVR Outcome at Week 96 by Baseline VL

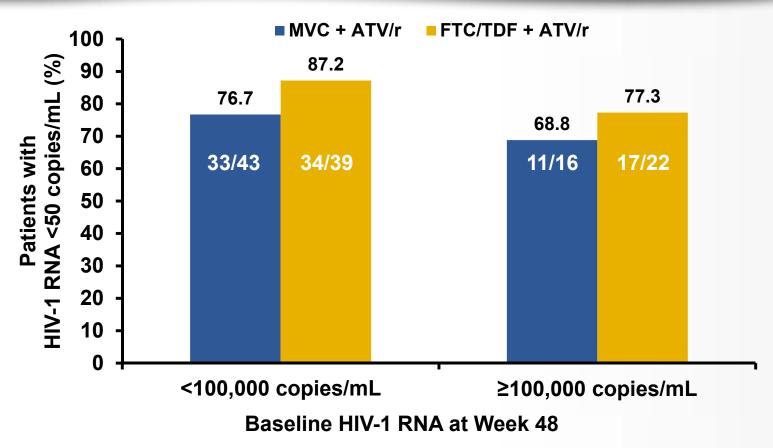


Responses by baseline CD4 cell count were: ≥200 cells/mm³: RPV 82% vs. EFV 79%,
 ≥50–<200 cells/mm³: RPV 71% vs. EFV 75% and <50 cells/mm³: RPV 56% vs. EFV 69%

Pooled ECHO and THRIVE: VF in the Resistance Analysis

VF _{res} , n (%)	RPV N=686	EFV N=682
VF _{res} (all)	96 (14.0)	52 (7.6)
Rebounder	52 (8)	34 (5)
Never suppressed	44 (6)	18 (3)
VF _{res} (up to week 48)	73 (11)	36 (5)
Rebounder	29 (4)	18 (3)
Never suppressed	44 (6)	18 (3)
VF _{res} (after Week 48 and up to Week 96)	22 (3)	16 (2)
Rebounder	21 (3)	15 (2)
Never suppressed	1 (0.1)	1 (0.1)


FTC/TDF vs. MVC: Open-label, 48-week Phase 2b Pilot Study


Patient Eligibility Criteria

- R5 HIV (ESTA) at screening
- ≥16 years of age
- HIV-1 RNA ≥1000 copies/mL
- CD4 ≥100 cells/mm³
- No evidence of resistance to ATV/r, TDF, or FTC

FTC/TDF vs. MVC: HIV-1 RNA <50 copies/mL at Week 48

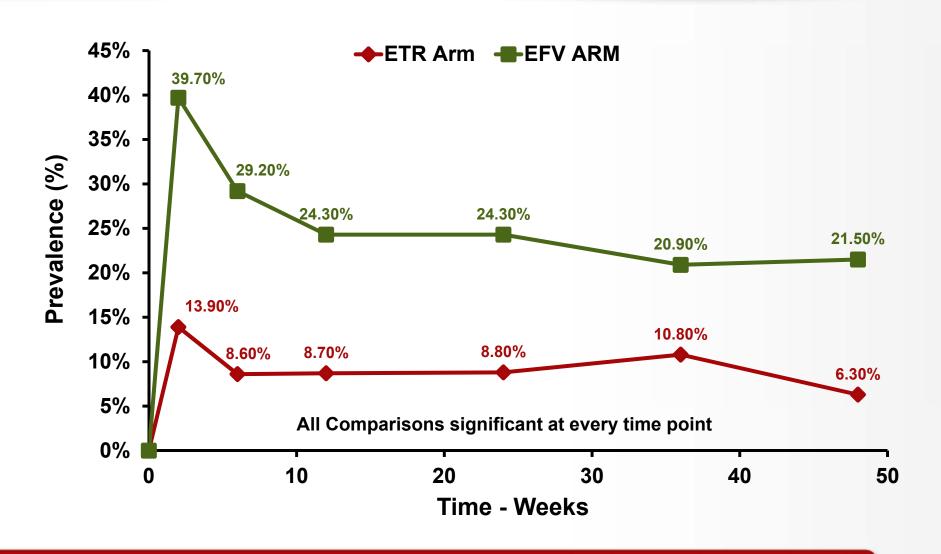
FTC/TDF vs. MVC: HIV-1 RNA <50 copies/mL at Week 48 According to Baseline Viral Load

- No resistance or tropism change
- Greater Incidence of hyperbilirubinemia in MVC plus ATV/r arm

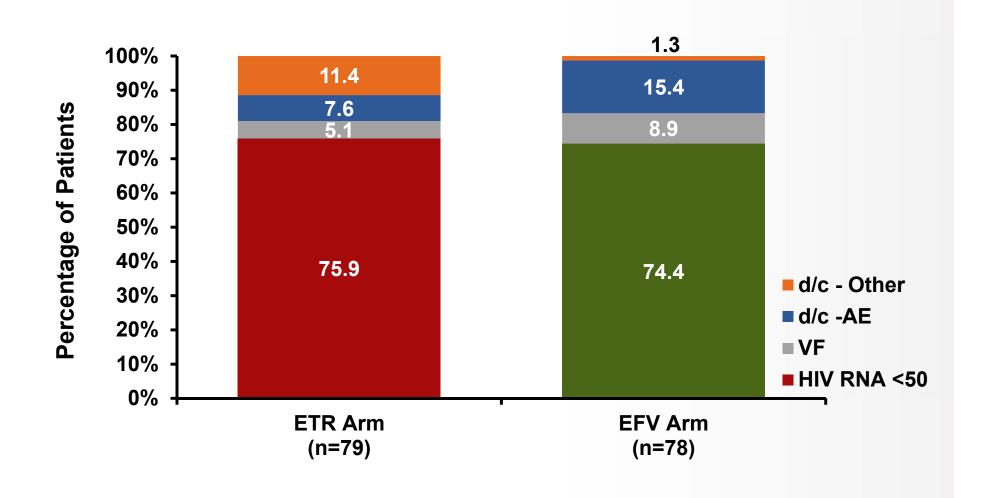
Intent-to-treat. Missing=failure

SENSE: Trial Design

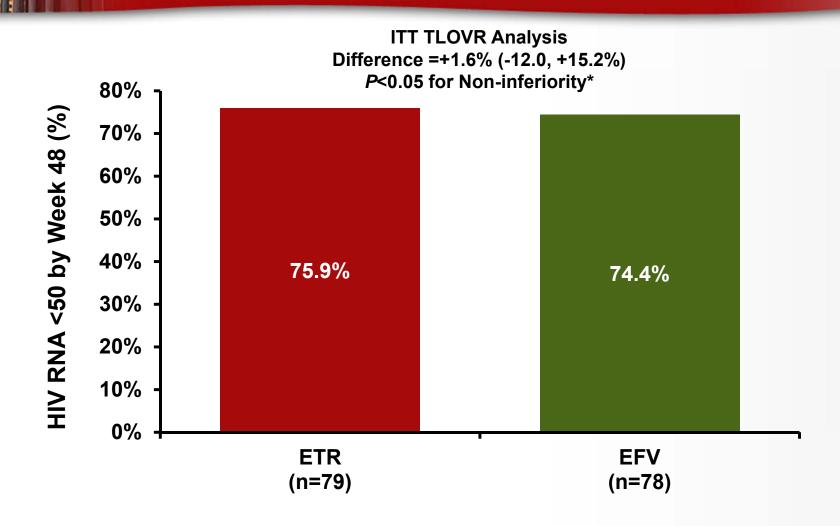
Treatment naïve, HIV RNA >5,000 copies/mL

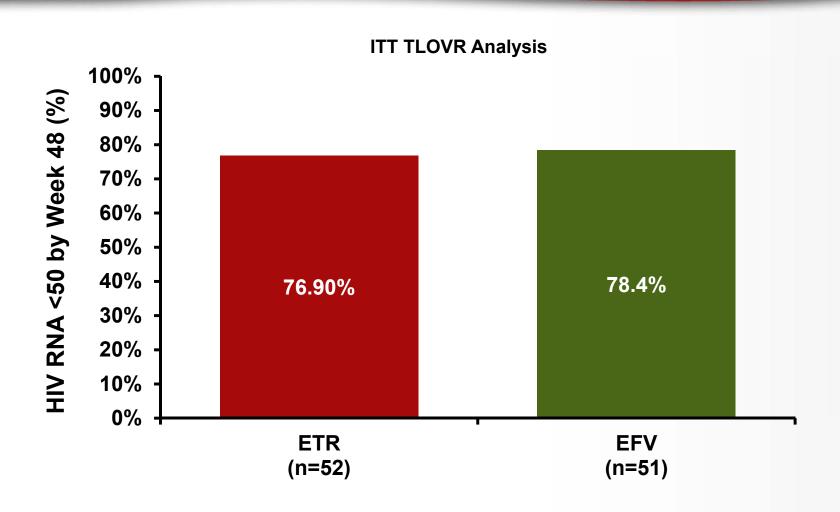

No genotypic mutations to NRTIs, NNRTIs or PIs (Bennett lists)

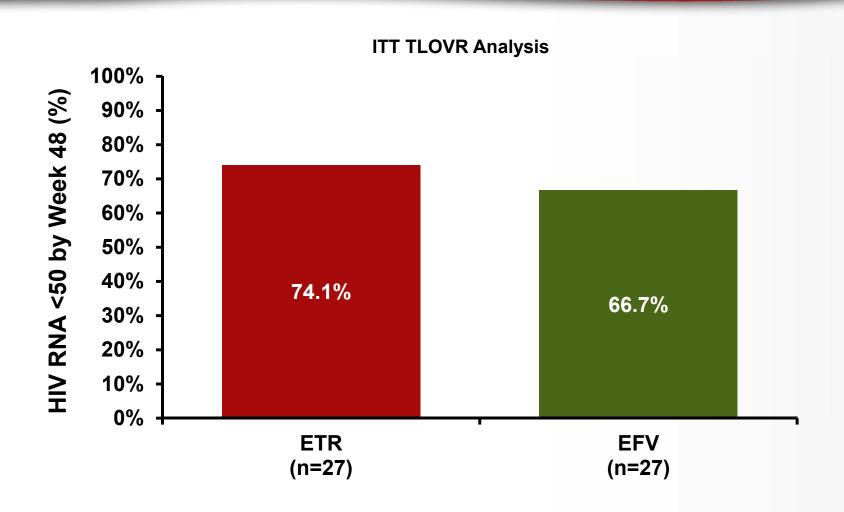
Predicted Phenotypic sensitivity to NNRTIs and selected NRTIs


(Virtual Phenotype)

- Double-blinded, active controlled to Week 48
- Two investigator-selected NRTIs (AZT+3TC; ABC+3TC; TDF+FTC)
- Primary endpoint: neuropsychiatric adverse events up to Week 12


SENSE: Grade 1 - 4 Drug-related **Neuropsychiatric AE Prevalence (ITT)**


SENSE: Summary Efficacy at Week 48 (ITT TLOVR) – by Type of Response (%)

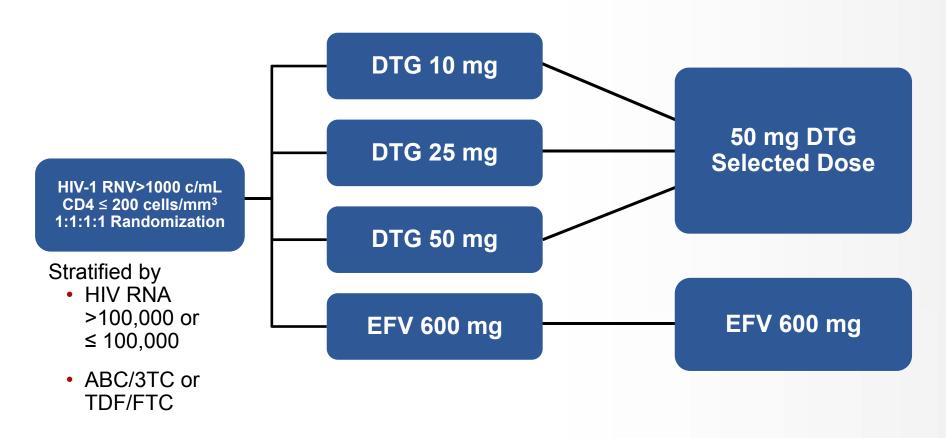

SENSE: HIV RNA <50 copies/mL at Week 48 - All Patients Randomized and Treated

SENSE: HIV RNA <50 copies/mL at Week 48 - Baseline HIV RNA ≤100,000 copies/mL

SENSE: HIV RNA <50 copies/mL at Week 48 - Baseline HIV RNA >100,000 copies/mL

SENSE: "Virological Failures" by TLOVR

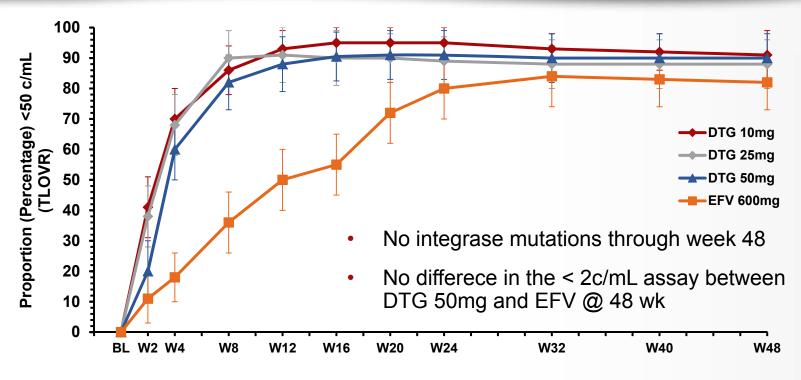
- Etravirine (n=4)
 - No resistance mutations
- Efavirenz (n=7)
 - 3/7 with Resistance
 - V106I + M184I
 - K103N
 - K103N + P225H
 + M184V



Treatment-Experienced Patients and New Therapies

Jose Arribas, MD
HIV Research Director, HIV Unit
Hospital de La Paz
Madrid, Spain

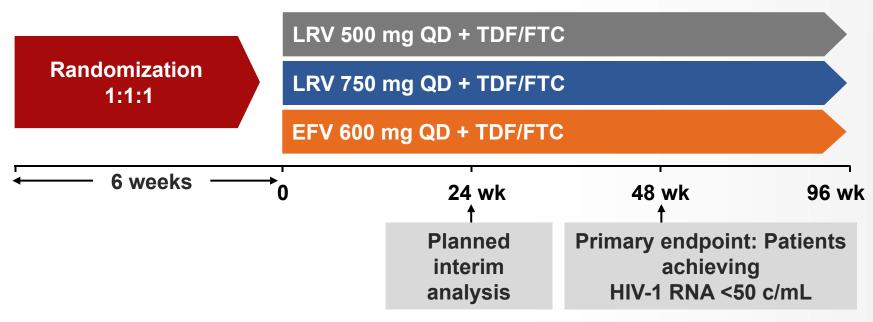
Dolutegravir in ARV-Naïve Patients


- Phase IIb dose-ranging trial, partially blinded (N~200)
- All arms included 2 NRTIs given once-daily

Dolutegravir in ARV-Naïve Patients: Baseline characteristics

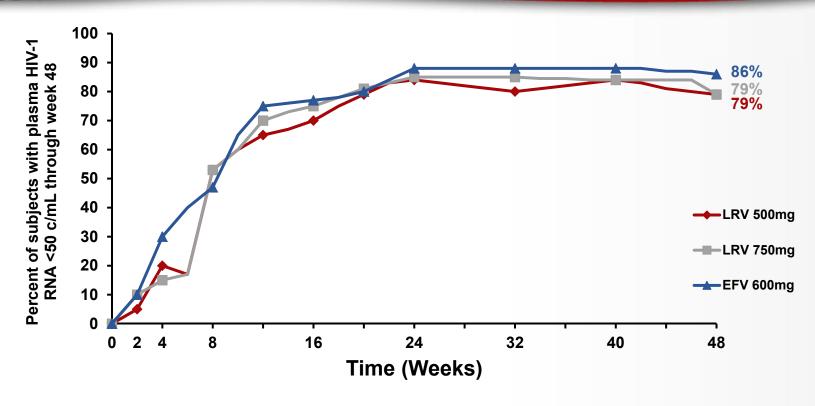
	DTG 10mg	DTG 25mg	DTG 50mg	EFV 600mg	Total
	(N=53)	(N=51)	(N=51)	(N=50)	(N=205)
Baseline HIV-1 RNA					
Mean (log ₁₀ c/mL)	4.42	4.38	4.58	4.46	4.46
>100,000 c/mL	11 (21%)	10 (20%)	12 (24%)	11 (22%)	44 (21%)
Baseline CD4+ (cells/mm³)					
Mean	309.4	333.8	327.2	327.5	324.3
<350	36 (68%)	29 (57%)	35 (69%)	30 (60%)	130 (63%)
Investigator-selected NRTIs					
TDF/FTC	36 (68%)	34 (67%)	34 (67%)	34 (68%)	138 (67%)
ABC/3TC	17 (32%)	17 (33%)	17 (33%)	16 (32%)	67 (33%)

Dolutegravir in ARV-Naïve Patients: Results at 48 Weeks

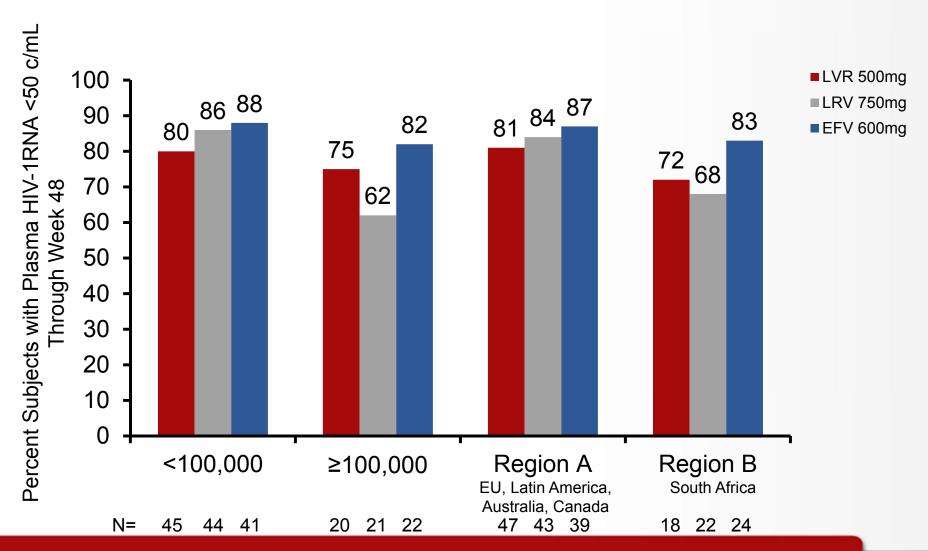

Outcome	DTG 10mg (N=53)	DTG 25mg (N=51)	DTG 50mg (N=51)	EFV 600mg (N=50)
Responder	48 (91%)	45 (88%)	46 (90%)	41 (82%)
Reason for non-response (virologic)				
Rebound or virologic non-response	4 (8%)	3 (6%)	2 (4%)	3 (6%)
Never suppressed through Week 48	0	0	1 (2%)	1 (2%)

Dolutegravir in ARV-Naïve Patients: Adverse Events and Safety

- Small changes in serum creatinine (0.1-0.15 mg/dL) were observed
 - Observed with both NRTI backbones, did not progress over time
 - No effect of DTG on GFR (as measured by iohexol clearance)
 - In vitro and clinical data are consistent with inhibition of the renal transporter responsive for tubular secretion of creatinine
- Lower Impact on Plasma Lipids than EFV but no difference in TC/HDL

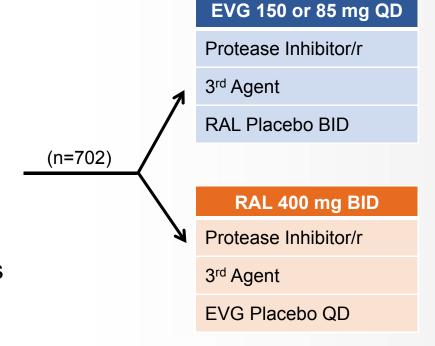

	DTG 10mg (N=53)	DTG 25mg (N=51)	DTG 50mg (N=51)	DTG Subtotal (N=155)	EFV 600mg (N=50)
Grade 2-4 Drug Related (all)	5 (9%)	4 (8%)	4 (8%)	13 (8%)	10 (20%)
Gastrointestinal	1 (2%)	1 (2%)	1 (2%)	3 (2%)	2 (4%)
Psychiatric disorders	0	0	0	0	3 (6%)
Metabolic disorders	0	3 68%)	1 (2%)	4 (3%)	0
Skin disorders	0	0	0	0	2 (4%)
Infections	2 (4%)	0)	0	2 (1%)	0
General disorders	1 (2%)	0	1 (2%)	2 (1%)	1 (2%)
Serious Adverse Events (all)	3 (6%)	1 (2%)	4 (8%)	8 (5%)	4 (8%)
AEs Leading to Discontinuation	0	1 (2%)	1 (2%)	2 (1%)	4 (8%)

Lersivirine: Phase 2b Trial in Treatment-naïve Patients

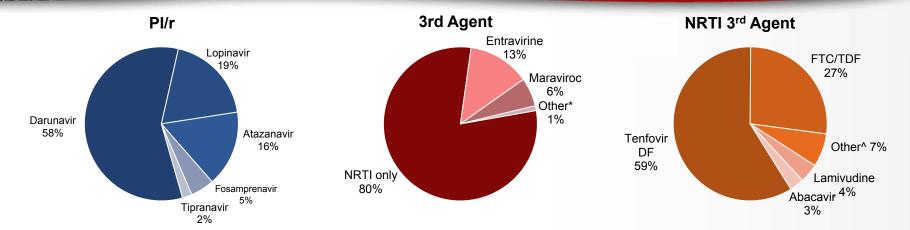

- Randomized, double-blind, comparative study
- Selection criteria
 - ARV naïve
 - HIV-1 RNA ≥1,000 c/mL
 - CD4+ >200 cells/mm³
 - No RT mutations by standard genotyping
- Stratified by viral load (<100,000 or ≥100,000 c/mL) & geographic region (A & B)

Lersivirine: Results

Treatment	N	n	%	Difference (%)	SE Diff (%)	80% CI- Lower (%)	80% CI- Upper (%)
LRV 500mg QD	65	51	79	-9	7	-18.1	0.8
LRV 750mg QD	65	51	79	-8	7	-17.0	1.2
EFV 600mg QD	63	54	86	NA	NA	NA	NA



Lersivirine: Select Adverse Events


Number of Subjects with AE, n (%)	LRV 500 mg N = 65	LRV 750 mg N = 65	EFV 600 mg N = 63
Nausea	15 (23)	27 (42)	8 (13)
Headache	15 (23)	11 (17)	9 (14)
Abnormal dreams	5 (8)	5 (8)	12 (19)
Dizziness	5 (8)	4 (6)	13 (21)
Rash*	3 (5)	1 (2)	7 (11)
Abdominal pain	2 (3)	6 (9)	7 (11)
Vomiting	2 (3)	10 (15)	9 (14)
Diarrhea	10 (15)	10 (15)	10 (16)
Insomnia	5 (8)	9 (14)	5 (8)

Elvitegravir vs. Raltegravir in Treatment-Experienced Patients

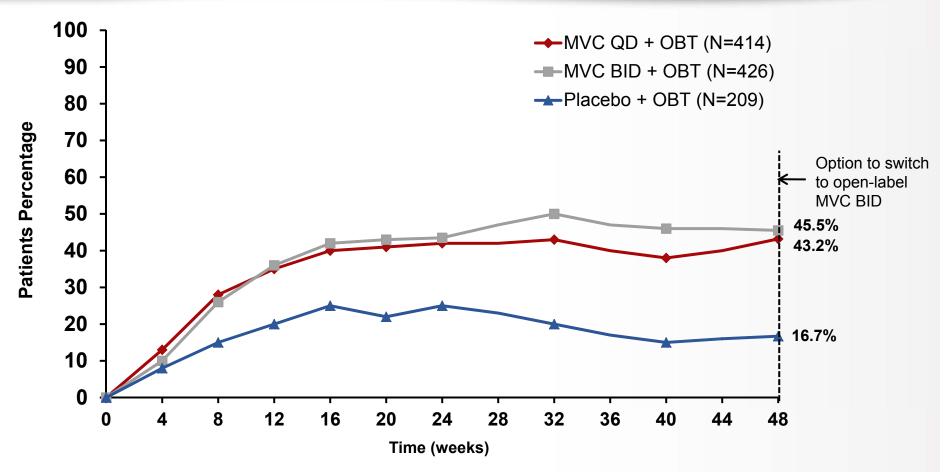
- 96-week randomized (1:1), double-blind, double-dummy
- Treatment-experienced patients
- Background regimen (BR) based on resistance testing:
 - 2nd Agent: fully active PI/r
 - 3rd Agent: NRTI, ETR, MVC, T-20
 - If M184V/I, may add 3TC or FTC
- Primary Endpoint: HIV-1 RNA
 < 50 copies/mL through 48 weeks
 TLOVR
- Non Inferiority Study with lower limit 95% CI at -10%

Elvitegravir vs. Raltegravir: Baseline Characteristics

Characteristic	EVG (n = 351)	RAL (n = 351)
HIV RNA (log ₁₀ copies mL), Median HIV RNA VL ≥ 100,000	4.35 26%	4.42 26%
CD4 count (cells/mm³), Mean CD4 count <200 cells/mm³	259 44%	264 45%
Baseline Resistance Mutations NRTI NNRTI Primary PI Two or more classes	69% 63% 31% 64%	68% 60% 34% 60%

Other*: T-20, T-20+TDF, ETR+NRTI

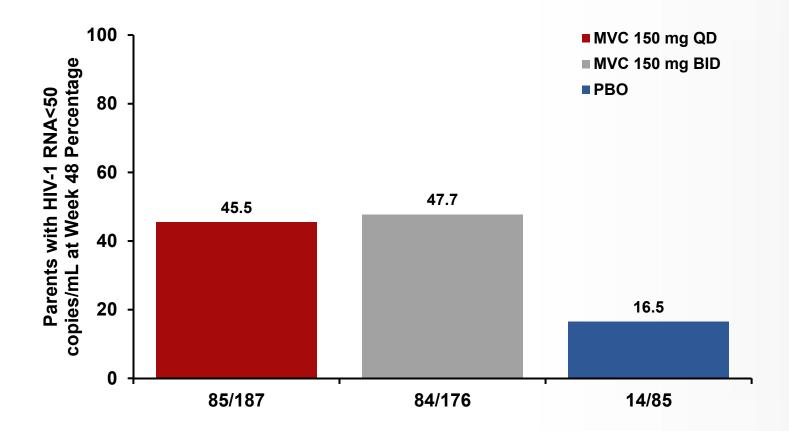
Other^: 3TC/ABC, 3TC/ZDV, Zidovudine, Didanosine, Emtricitabine


Treatment Outcome, %	EVG (n=351)	RAL (n=351)	Prop Diff (95% CI)
Responder	59%	58%	1.1% (-6.0 – 8.2)
Per Protocol Analysis	75%	73%	1.4% (-5.9 – 8.6)
Virologic Failure	20%	22%	
Rebound	11%	16%	
Never Suppressed	8%	5%	
Switched background regimen	1%	1%	
Any NRTI-R	14%	19%	
Any PI-R	7%	4%	
Any Integrase-R	27%	21%	
T66I/A	12%	0%	
E92Q	8%	1%	
T971	5%	4%	
Y143R/H/C	0%	1%	
S147G	5%	0%	
Q148R/H	5%	6%	
N155H	5%	13%	

Elvitegravir vs. Raltegravir: Safety

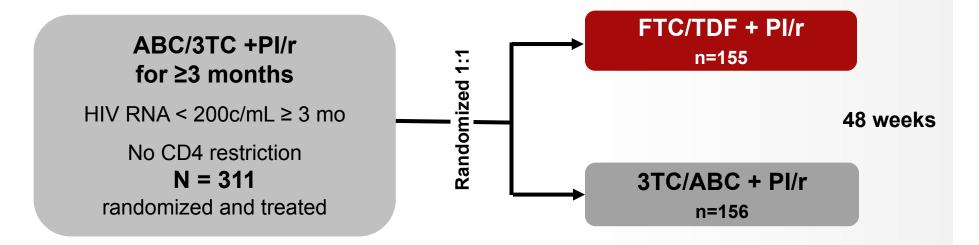
Adverse Events (treatment Emergent)	EVG (n=354)	RAL (n=351)
Any	88%	87%
Lead to Study Drug Discontinuation	3%	4%
Grade 3 or 4	19%	22%
Serious Adverse Events (SAE)	16%	21%
Deaths (n)	1	8
Diarrhea	12%	7%
GGT	3%	6%
ALT	2%	5%
AST	1%	5%

P < 0.05

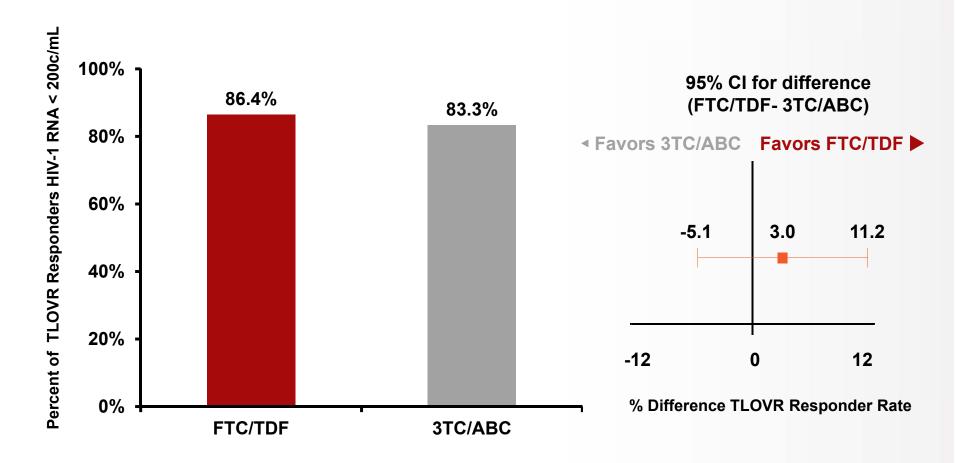

Maraviroc plus bPI: Subanalysis of Motivate 1 & 2

 Current analysis restricted to R5 by ESTA & bPI (fAMP excluded) and MVC 150 QD or BID

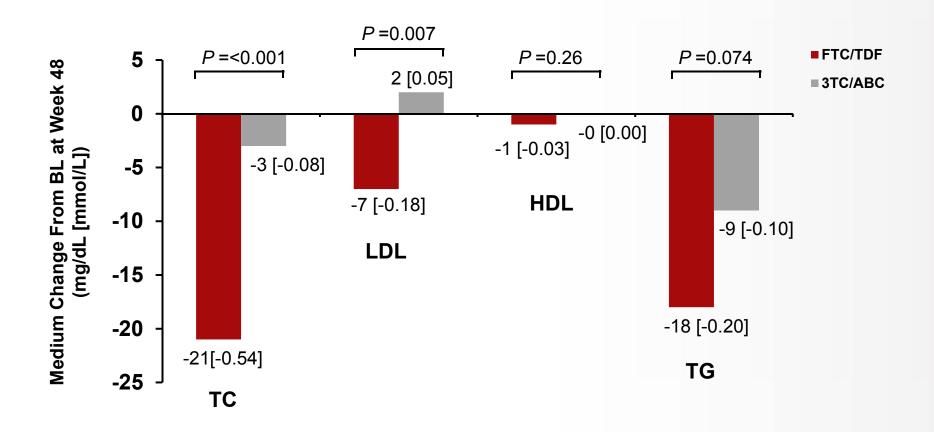
*P<0.0001 vs placebo


Maraviroc plus bPI: Results

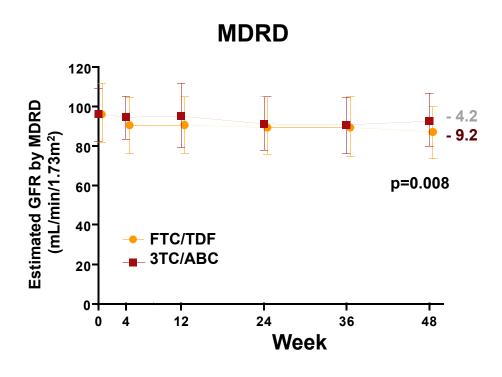
 Similar results in patients with HIV RNA >100,000 copies/mL or CD4 < 50 cells/mm³ at screening or by number of active drugs in background regimen at baseline (wOBTss < or ≥ 1)

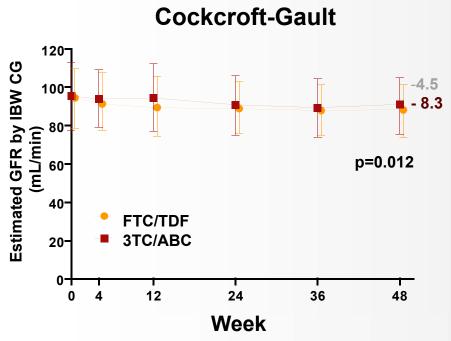

SWIFT: Study Design

Prospective, open-label, multicenter study


	LPV/r	ATV+RTV	FPV+RTV 100mg	FPV+RTV 200mg	DRV+RTV
FTC/TDF	48/311 (15%)	62/311 (20%)	22/311 (7%)	12/311 (4%)	9/311 (3%)
3TC/ABC	53/311 (17%)	60/311 (19%)	12/311 (4%)	19/311 (6%)	11/311 (4%)

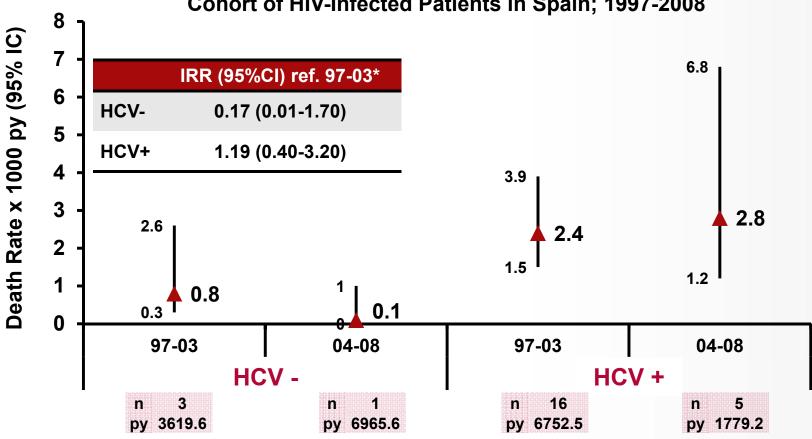
SWIFT: Results Through Week 48


Virologic failure (>200c/mL): 3 TDF/FTC, 11 ABC/3TC


SWIFT: Fasting Lipids Change from Baseline at Week 48

No significant difference between groups in total cholesterol/HDL ratio at Week 48

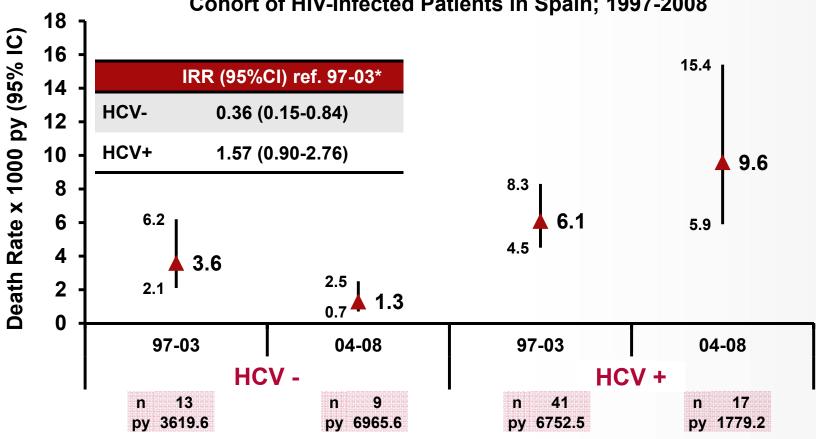
SWIFT: eGFR through 48 Weeks



Management

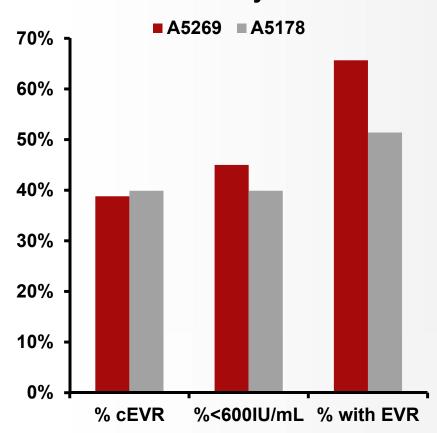
Jürgen Rockstroh, MD
Professor, University of Bonn
Bonn, Germany

Liver-related Death Rates Stratified by HCV-status and Period



^{*}Crude incidence rate ratio (and 95% CI) of death in period 2004-08 taking death rates in 1997-03 as reference

Non-liver-related Non-AIDS-related Death Rates Stratified by HCV-status and Period


^{*}Crude incidence rate ratio (and 95% CI) of death in period 2004-08 taking death rates in 1997-03 as reference

Nitazoxanide Increases Rate of Early Virologic Response When Added to peg-IFN + RBV for HCV Genotype 1 Infection: A5269

- Single arm open label study with historical comparison
- Nitazoxanide 500 mg BID x 4 wks, then add Peg-IFNα-2a + RBV 1000 – 1200 mg QD
- 68 Subjects Enrolled:
 - 78% men, 48% AA
 - 91% on ART
 - 73% HIV RNA <detectable
- Response Rates:
 - RVR 10.4%
 - cEVR 38.8%
 - EVR 65.7%
- **GI Toxicity:** Diarrhea, nausea, vomiting most common
- Conclusion: Nitazoxanide can potentiate the effects of IFN+RBV compared to historical populations

cEVR and EVR: Comparison with Prior Study – A5178

Predictors of SVR with Boceprevir-Containing Regimens Results from the SPRINT-2 and RESPOND-2 Studies (HCV GT 1 Monoinfection)

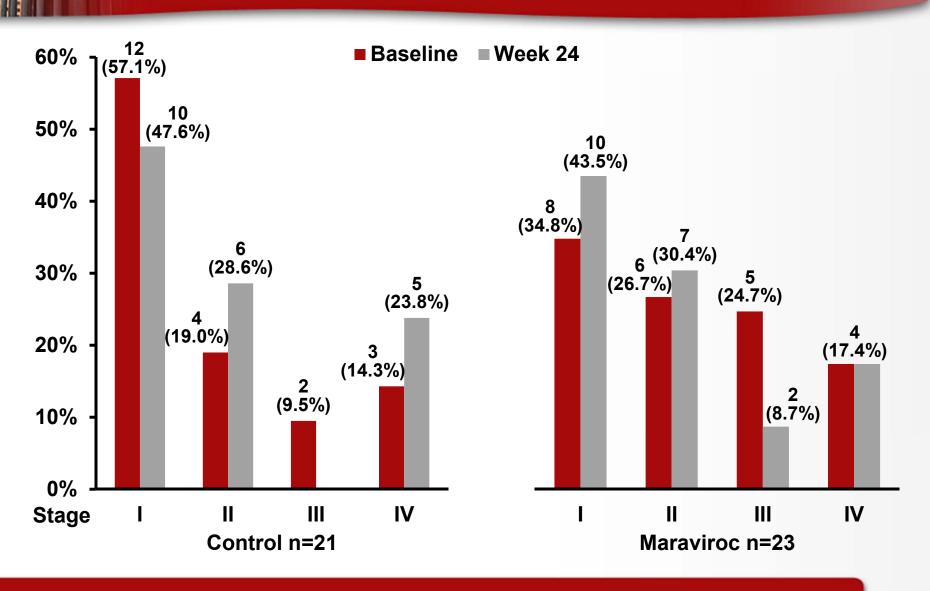
Multiple Stepwise Logistic Regression Model of Predictors of SVR Including Treatment Week 4 Response as an Effect

SPRINT-2: Effect	Odds Ratio (95% CI)	p-value
BOC/PR48 vs PR48	7.0 (4.1, 12.0)	<0.0001
BOC/RGT vs PR48	6.0 (3.5, 10.2)	<0.0001
Baseline HCV-RNA; ≤400,000 vs >400,000 lU/mL	5.8 (1.9, 17.5)	0.002
Log decline in HCV-RNA at TW 4 (continuous variable)	2.6 (2.1, 3.0)	<0.0001
Genotype: 1b/others vs 1a	2.3 (1.5, 3.6)	<0.001
BMI: 25-30 kg/m² vs >30 kg/m²	2.3 (1.4, 3.9)	0.002
BMI: ≤25 kg/m² vs >30 kg/m²	1.9 (1.1, 3.3)	0.02
RESPOND-2: Effect	Odds Ratio (95% CI)	p-value
BOC/PR48 vs PR48	11.4 (4.6-28.0)	<0.0001
BOC/RGT vs PR48	7.9 (3.3-18.9)	<0.0001
Previous Response: Relapser vs Nonresponder	2.2 (1.2-4.3)	0.01
Log decline in HCV-RNA at TW 4 (continuous variable)	1.8 (1.3-2.4)	<0.0001
BMI: ≤25 kg/m² vs >30 kg/m²	3.4 (1.4-8.2)	0.01

Only covariates remaining significant at α =0.05 after adjustment for the other variables were retained in the model as shown in the table. In both studies, IL-28B was no longer an important predictor of SVR when lead-in response was considered.

Is CCR5 Inhibition Beneficial for Further Liver Fibrosis Progression in HIV/HCV Coinfected Individuals?

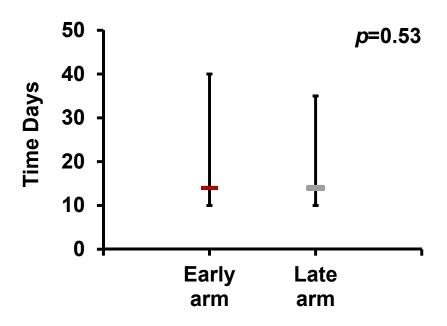
- Phase III, proof of concept, prospective, open label, randomized, controlled trial
- HIV/HCV co-infected subject with undetectable HIV-RNA (< 50 copies/ml)


Arm 1:
 Maintain
 Atazanavir/RTV +TDF/FTC

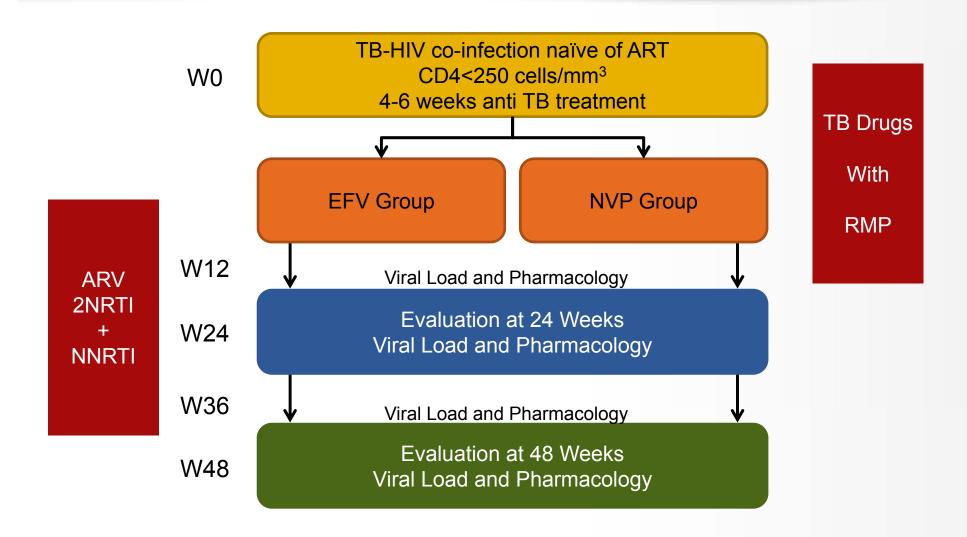
HIV/HCV Patients
 on
 Atazanavir/RTV +TDF/FTC

Arm 2:
 Atazanavir/RTV +
 TDF/FTC +
 Maraviroc 150 mg BID

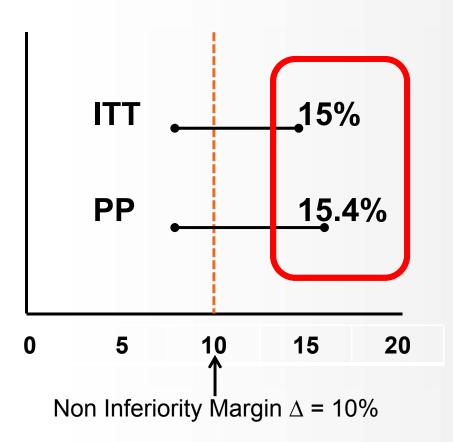
^{*} Safety analysis of the intervention was planned on the first 60 patients enrolled before continuing enrolment in the study


Change of LS Stage from Baseline to Week 24

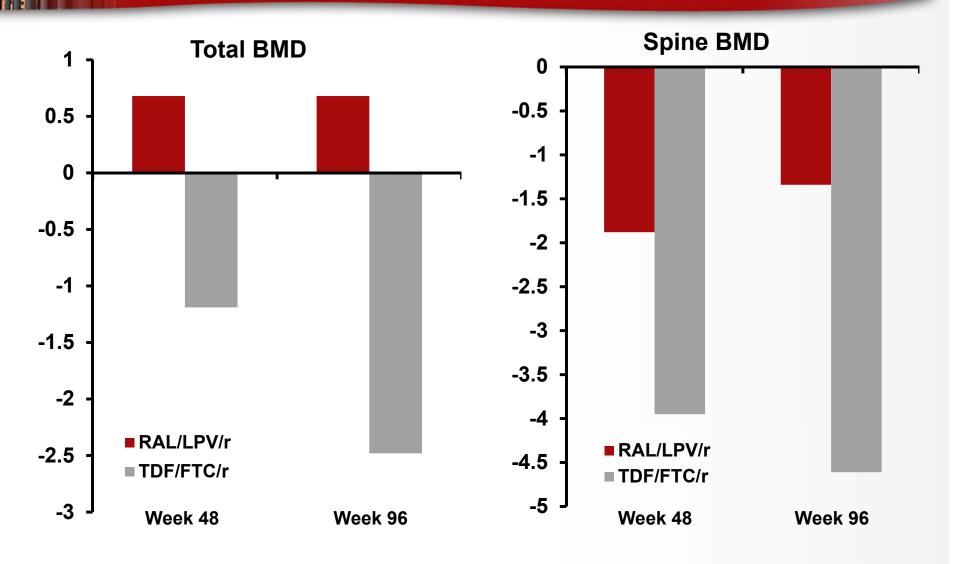
Incidence & Timing of TB-IRIS in the CAMELIA Study


- TB-IRIS occurred in 155/661 patients (26%)
- Incidence: 3.16 per 100 persons-months (95% CI, 2.7 to 3.7)
- Double the risk of developing TB-IRIS (HR 2.23) when ART initiated at 2 weeks

Median time (IQR) of Occurrence


Treatment and Outcome Treatment During IRIS 39 None Non Steroidal 57 **Anti-Inflammatory Drugs** 59 Corticosteroids Median time from TB-IRIS 5 to treatment, days **IQR** 1-14 **Outcome** Cured 148 TB-IRIS Related Death 6 Withdrawal During TB-IRIS

CARINEMO-ANRS 12146



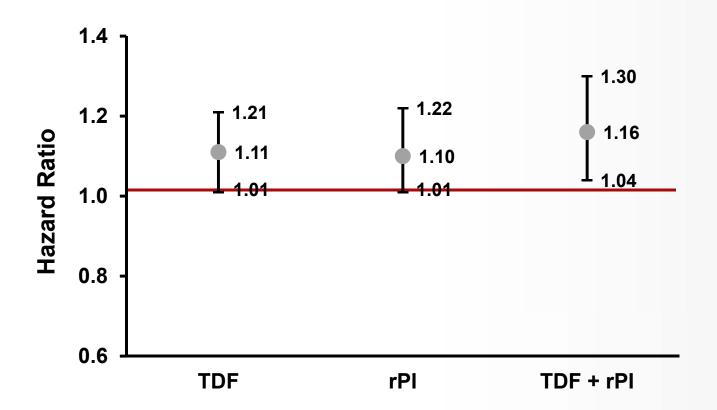
CARINEMO-ANRS 12146

EFV	_	NVP	$=\Delta$
68.4%	-	60%	= 8.4%
(195/285)		(171/285)	
78.9%	_	70%	= 8.9%
(194/246)		(170/243)	

Progress: BMD Changes by LPV/r + RAL or TDF/FTC

Antiretroviral Exposure and Risk of Osteoporotic Fractures: HAART Era

Veterans Affairs' Clinical Case Registry


Drug or Drug	PY of	Hazard Ratio per Year o	Hazard Ratio per Year of Exposure (95% Confidence		
Category	Exposure	Univariate Analysis	Multi-variable Model 1	Multi-variable Model 2	
Tenofovir (TDF)	38,009	1.16 (1.08-1.24; <0.0001)	1.13 (1.05-1.21; 0.001)	1.12 (1.03-1.21; 0.011)	
Abacavir (ABC)	18,885	0.99 (0.92-1.07; 0.842)	0.96 (0.88-1.04; 0.313)	0.95 (0.87 -1.03; 0.194)	
AZT or D4T	68,376	1.02 (0.97-1.06; 0.489)	0.98 (0.93-1.02; 0.289)	0.99 (0.94-1.04; 0.600)	
Boosted PI (rPI)	32,109	1.11 (1.05-1.18; 0.001)	1.08 (1.01-1.15; 0.026)	1.05 (0.97-1.13; 0.237)	
NNRTI	48,943	1.01 (0.96-1.06; 0.771)	0.98 (0.93-1.03; 0.409)	0.98 (0.92-1.03; 0.386)	

MV Model 1: Controlling for CKD, age, race, tobacco use, diabetes and BMI;

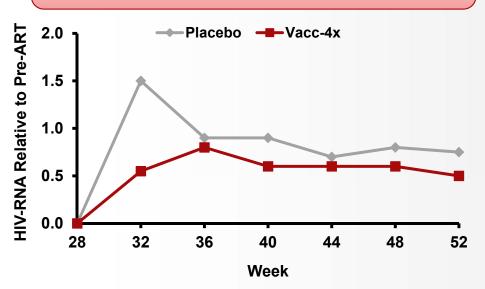
MV Model 2: Controlling for Model 1 variables + concomitant exposure to other ARVs.

Interaction Between TDF and PI Exposure for OF Risk: HAART Era

 Concomitant exposure to both TDF and rPI associated with a greater OF risk than exposure to either TDF without rPI or rPI without TDF

Therapeutic Vaccines – Maybe Possible

- Vacc-4x is peptide vaccine with highly conserved and immunogenic p24 domains
- Design: Vacc-4x or placebo (2:1) at weeks 1, 2, 3, 4, 16, 18 with analytical STI at week 28 for up to 24 weeks
 - Treatment resumed for fall in CD4+ count to <350 cells/mm³


Results:

- 135 enrolled (92 Vacc-4x, 43 PLC)
- Vacc-4x safe and well tolerated
- Conclusion:
 More effective control of HIV following vaccination

Difference in viral load at week 52:

- 44 Vacc-4x and 18 PLC off ART
- HIV RNA 0.55 log₁₀ c/mL lower in Vacc-4x recipients (p=0.0003)

Trend in Viral Load Set Point Following Treatment Interruption

Continuing Medical Education Internet Symposium

The 6th IAS Conference on Pathogenesis, Treatment and Prevention: ARV Therapies and Therapeutic Strategies

Jointly sponsored by the Postgraduate Institute for Medicine and ViralEd, LLC